Molecular Dynamics Simulation of Protein Dynamics and Lignocellulosic Biomass (m906)

Loukas Petridis Oak Ridge National Laboratory

1. Project Description PI: Jeremy C. Smith (ORNL)

Insight into physical processes leading to biological function in critical research missions:

Bioenergy

Bioremediation

Neutron scattering

2. Computational Strategies

Molecular Dynamics Simulation

Codes: GROMACS and NAMD

Algorithms:

Integration of equations of motions: verlocity Verlet.

N-body algorithms with neighborlist.

Domain and force decomposition for multi-level parallelization.

Grid-based electrostatics: Particle Mesh Ewald (FFT).

network communication

Computational Challenges for Capacity-Class Simulations

- 1. Biggest computational challenge: strong scaling is limited by network latency.
- → limits accessible timescales

- 2. Ensemble-based methods to enhance sampling of structural transitions substantial increase in computational cost
- currently not applicable in multi-component systems

(Capability-Class Simulations)

24M-atom simulation of enzyme binding to pretreated lignocellulose. 2012: 50 M INCITE hours on OLCF Jaguar XT5

3. Current HPC Usage

Hopper: 7.5M CPU hours in 2012 on single-molecule simulations

Cores	200-2,000	system size: ~50k-500k atoms
Checkpoint data	1.2 to 24 MB	
Checkpoint bandwidth	2 MB/sec	401
Data I/O*	0.2 – 2 Gb	~10k one-hour runs per year
I/O bandwidth	500 kB/sec	
Project directory space	1TB	
Archival data	10 TB	
Memory per node	~MB	

*based on 1 hour run

4. HPC Requirements for 2017

60 M hours.

Parallel concurrency increase x10:

extend lengthscales: biomass-microbe interactome

ensemble methods in complexes systems: signaling pathways

- Modest memory requirements (~10MB) and I/O bandwidth ~5MB/sec
- ~10k files, size ~ 10 MB 10 GB

4. HPC Requirements for 2017

Cores	2,000-20,000	
Checkpoint data	12 to 120 MB	
Checkpoint bandwidth	20 MB/sec	
Data I/O*	2 – 20 Gb	
I/O bandwidth	5 MB/sec	
Project directory space	2TB	write less
Archival data	20 TB	frequently
Memory per node	~MB	

Applications: Gromacs, NAMD, VMD

Development: C++, Boost, libxml, Cmake, Git, FFTW, Cuda (or

equivalent), Eclipse/PTP

5. Strategies for New Architectures

MD codes already compatible with hybrid CPU/GPU architectures

- Currently two CPUs as fast as CPU+GPU. By 2017 expect GPUs will provide 2x speedup.
- Implicit solvent calculations potentially benefit from GPU

5. Summary

- NERSC8 → new biology
 - Increase in accessible lengthscales
 - Ensemble-based methods for multi-component complexes.
- Recommendations on NERSC architecture:
 - Vendors: tightly integrated (ideally shared cache) CPU + GPU enabling fine-grain split of workload between CPU and GPU.
 - Strong scaling of MD simulations is limited by network latency: small cluster with lowest possible network latency.
 - Simulations are globally synchronized, therefore the lowest network connection is slowing down the entire simulation. A task placement that ensures nodes can communicate with low network latency.

